Automated Generation of Simulation Models from Utility Network ADE Data

Edmund Widl1, Giorgio Agugiaro2, Pablo Puerto3

1 AIT Austrian Institute of Technology, Center for Energy, Vienna, Austria
2 Delft University of Technology, Department of Urbanism, Delft, The Netherlands
3 CREM – Centre de Recherches Energetiques et Municipales, Martigny, Switzerland
Linking 3D semantic data models and simulation models

CityGML data
- database (PostgreSQL, Oracle, etc.)
- extended 3DCityDB (PostgreSQL)

technical simulations
- simulation tools (pandapower, Dymola, etc.)
- IntegrCiTy simulation toolchain (Python)

bi-directional mapping using SQLAlchemy
Package DBLayer – IntegrCiTy Data Access Layer

- intended purpose:
 - retrieving/storing scenario data from/to a database ➔ *extended 3DCityDB*
 - retrieving/storing co-simulation setups from/to a database ➔ *Simulation package*
 (not covered in this presentation)
 - creating simulation models from information stored in a database ➔ *tool-specific mappings*

- prototype implementation in Python
 - publicly available (open source): https://github.com/IntegrCiTy/dblayer
Package DBLayer – Examples (1/3)

- domain-specific functionality for storing power grid models
 - adapted to the thinking of power engineers:
 - start with electrical busses
 - connected busses with power lines
 - attach electrical loads to busses
 - etc.
 - applied to „CIGRE low-voltage test feeder“ (small but realistic distribution network model)
 - available online:
 https://github.com/IntegrCiTy/dblayer/blob/master/examples/PowerGridModelWriteDB.ipynb

- domain-specific functionality for storing thermal network models
 - similar to power grids, but not the same
 - available online:
 https://github.com/IntegrCiTy/dblayer/blob/master/examples/ThermalNetworkModelWriteDB.ipynb
• retrieve and inspect data of a power grid model from the extended 3DCityDB
 • available online: https://github.com/IntegrCiTy/dblayer/blob/master/examples/PowerGridModelInspect.ipynb
• object-oriented approach built in top of package SQLAlchemy
 • automated mapping of data structures in the 3DCityDB to Python classes
 • retrieve data from standard tables (citydb) or views (citydb_view)
 • allows conditional queries and joining of data over two or more tables / views
• automatedly create a simulation model from a power grid model from the extended 3DCityDB
 • available online: https://github.com/IntegrCiTy/dblayer/blob/master/examples/PowerGridModelSim.ipynb
• automatedly create a simulation model from a thermal network model from the extended 3DCityDB
 • available online: https://github.com/IntegrCiTy/dblayer/blob/master/examples/ThermalNetworkModelSim.ipynb
General findings and learnings

• UN ADE is definitely capable of representing different types of networks in a way that allows to extract simulation models

• functions and views provided by Giorgio‘s extended 3DCityDB are a valuable tool for implementing the required functionality

• some practical challenges remain:
 • some attributed and classes are missing
 ➔ see example for power grids on the next slides
 • mapping of available (or de facto) standards to UN ADE would definitely be a prerequisite for the adoption by domain experts
 ➔ e.g., mapping of CIM to UN ADE classes / attributes
Suggestions for improvements regarding power grid models

- two key concepts for representing power grids are not very well covered (or probably I missed something in the UML diagrams)

 - **electrical busses**
 - fundamental building blocks of power grids
 - mapping to `SimpleFunctionalElement` is an option, but lacks some details:
 - *type*: node, busbar, muff, …
 - *grid voltage level* (+unit): if not as attribute, `ElectricalMedium` associated to `Network` might work, but would require to split a power system in several networks

 - **electrical loads**
 - I used `TerminalElement` associated to `ElectricalAppliances` (Energy ADE), but this lacks an important detail:
 - *reactive power* (+unit)
 - probably somehow using `ElectricalMediumSupply` (negative supply)?
• **lines & cables**
 • missing attributes:
 • *resistance* (+unit)
 • *reactance* (+unit)
 • *capacitance* (+unit)
 • *maximum thermal loading* (+unit)
 • possible alternative: new class representing a „line type“ (avoids unnecessary replication of data)

• **transformers**
 • I used class *ComplexFunctionalDevice*, but …
 • needs special treatment, because of required semantic differentiation between low-voltage and high-voltage side
 • possible alternative: combination of device and network link
 • compare with situation of grid voltage level for electrical busses
Conclusion and outlook

• **Initial** work to bridge the gap between “GIS” and “technical-simulations” worlds

• acquired reasonable understanding of **requirements for power grids**
 • mapping to more simulators needed (at least conceptually) for better understanding

• only rough idea for **thermal networks** and **gas networks**
 • lack of generally agreed upon “test systems”
 • probably not an obstacle but rather an opportunity?

• currently implemented in project **IntegrCiTy**, but…

• …developed tools are **generic and flexible** enough to be used also in other contexts
 • **intentional** open development → test and give (constructive) feedback
THANK YOU!

Edmund Widl