Lowering the Barrier to Entry to the UtilityNetwork ADE

M.Sc. Isaac Boates

M.Sc. Alexandru Nichersu
Nanaimo Sample

- Water network released as open data in ESRI shapefile format
- Converted into first public UtilityNetwork ADE sample using FME here at TUM

- Contained:

 1. A Network Element
 2. A NetworkGraph Element
 3. LiquidMedium Element
 4. ExteriorMaterial Elements
 5. RoundPipe Elements
 6. TerminalElements
 7. Node Elements
 8. InteriorFeatureLink Elements
 9. FeatureGraph Elements
 10. InterFeatureLink Elements
Getting Functional

- Added “appurtenances”
 - Valves
 - Reservoirs
 - Junctions
 - Etc.
- Imported sample into 3DCityDB
- Experimented with routing between elements using pgRouting
- Found ways to simulate interruptions based on feature properties
- Wrote a paper!

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-A, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1-5 October 2018, Deft, The Netherlands

NETWORK MODELLING AND SEMANTIC 3D CITY MODELS:
TESTING THE MATURITY OF THE UTILITY NETWORK ADE FOR CITYGML WITH A WATER NETWORK TEST CASE
I. Beates¹, G. Agusaro², A. Nicholls²

13.05.2018 | Lowering the Barrier to Entry to the UtilityNetwork ADE
Mastering the ADE

• Became the subject of master thesis
• Added an electrical network derived from the local roads
• Wrote a Python API to interface with the database
• Wrote a model to detect changes in electrical output from water flow fluctuations
• Made a second “schematic” representation

Cascading Effect of Broken Water Pipe on Electrical Network

Pipe repaired

Pipe broken

Power produced or demanded (kW)

Base Case With Pipe Breakage

Time

0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
Mastering the ADE
Previous Work
The Nanaimo work has been useful for us experts, but it may be daunting to newcomers…
Time for a clean slate

- To get people into using the UtilityNetwork ADE we have to start from the basics:
 - Making a small, basic network from a well-known source format
 - Performing basic routing analysis on said network

- We should highlight the UtilityNetwork ADE’s strengths
 - Hierarchical network composition
 - Explicit topography and topology
Making a network

- FME workbench for creating hierarchical networks from ESRI shapefiles
 - Must not necessarily be in shapefile format, just a starting point
- FME workbench for importing this data into a 3DCityDB instance

- Current supports:
 1. Network elements
 2. NetworkGraph elements
 3. RoundPipe Elements
 4. Terminal Elements
 5. FeatureGraph Elements
 6. InteriorFeatureLink Elements
 7. Node Elements
 8. InterFeatureLink Elements
 9. NetworkLink Elements
Current State
Hierarchical Networks

- Network elements are derived from attributes of RoundPipe elements
- NetworkGraph elements are stored as children of their respective Network elements
- Hierarchy level determined via an attribute, and are assigned as a child element of the Network element of higher order that it touches

```xml
<Network>
  <subOrdinateNetwork>
    <Network>
      <subOrdinateNetwork>
        <Network>
        </Network>
      </subOrdinateNetwork>
    </Network>
  </subOrdinateNetwork>
</Network>
```
RoundPipes

- RoundPipe elements are direct children of Network elements.
- Their FeatureGraph elements are stored as children of the Network element’s NetworkGraph element and referenced via xlink.
- The FeatureGraphs contain two exterior Node elements and an InteriorFeatureLink element.

```xml
<Network>
  <topoGraph>
    <NetworkGraph>
      <featureGraphMember>
        <FeatureGraph>
          <nodeMember>
            <Node />
          </nodeMember>
          <nodeMember>
            <Node />
          </nodeMember>
          <linkMember>
            <InteriorFeatureLink>
              <start xlink />
              <end xlink />
            </InteriorFeatureLink>
          </linkMember>
        </FeatureGraph>
      </featureGraphMember>
    </NetworkGraph>
  </topoGraph>
  <component>
    <RoundPipe>
      <topoGraph xlink />
    </RoundPipe>
  </component>
</Network>
```
InterFeatureLinks

- InterFeatureLink elements are stored as children of their respective Network element’s NetworkGraph element.
- They link Node elements found in network features’ FeatureGraph Elements

Note: In reality, the network elements (grey circles) and Nodes (green and purple dots) are spatially coincident
NetworkLinks

- NetworkLinks are links between separate networks.
- They exist outside of any Network element, but link Node elements found within the FeatureGraph elements of elements in separate networks.
- Should be modelled with a ConnectorElement, currently using SimpleFunctionalElement.

Note: In reality, the network elements (grey & green circles) and nodes (purple and orange dots) are spatially coincident.
To the database and beyond

- FME workbench for taking the specific output of the first workbench and writing it into a 3DCityDB instance
 - Uses the database schema by Dr. Agugiaro, not the “auto-derived” schema from the importer/exporter

https://github.com/gioagu/3dcitydb_ade
pgRouting

- PostgreSQL extension for performing routing on topological graph structures
- Used in my master thesis

status="inUse" element
status="outOfService" element
Pipe
Calculated route
Python API For the UtilityNetwork ADE

• Started a Python API for interacting with the UtilityNetwork ADE

• (Almost) every pgRouting uses the same (or similar) “graph table” structure as an input

• The API creates a view out of the 3DCityDB (+UtilityNetwork ADE instance) which is used as the foundation for routing operations

• Currently somewhat basic, but implements two kinds of routing:
 • Dijkstra (one to one, one to many, many to one, many to many)
 • Flood fill (one, many)

https://github.com/iboates/UtilityNetwork-ADE-3DCityDB-Manager
Python API For the UtilityNetwork ADE

- Supports constriction of the network via exclusion of individual features or networks

- Can create “output tables” from routing analysis output for visualization (can also make them as views)

- With more work on getting/setting feature properties, this could become very powerful for functional modelling

- Stay tuned for a demo!

https://github.com/iboates/UtilityNetwork-ADE-3DCityDB-Manager
Known limitations

• Seems to have problems routing when a subnetwork has multiple connections to its parent network

• Does not support “lateral” connections (i.e. “sibling” networks with the same parent network)

• Does not support any supply attributes (fill level, flow rates, etc.)

• Only supports RoundPipe features for no

https://github.com/iboates/UtilityNetwork-ADE-3DCityDB-Manager
Conclusions

Going Forward

• My personal opinion is that the focus should be on making functional samples that can perform simple modelling tasks before defining exotic theoretical capabilities

• Also on documentation and best practices

• I do not personally have much time to devote to further development of this API, so I hope that there is interest among others to carry on this work

https://github.com/iboates/UtilityNetwork-ADE-3DCityDB-Manager
Thank you for your attention

M. Sc. Isaac Boates
Isaac.Boates@eifer.uni-karlsruhe.de

M. Sc. Alexandru Nichersu
Alexandru.Nichersu@eifer.uni-karlsruhe.de