Sneak preview of the Scenario ADE v. 0.2

Giorgio Agugiaro

CityGML Joint Workshop Energy + Utility Network ADE
7 December 2017, Karlsruhe

Smart and Resilient Cities Unit
Center for Energy
AIT - Austrian Institute of Technology
Vienna, Austria
Outlook

- Bridging 3D city modelling & simulation domains (reprise)
 - Refer to previous presentation of Edmund Widl on the "Simulation Package"

- The Scenario ADE
 - Definition and properties
 - UML Diagram
 - 3DCityDB

- Conclusions
Real city

"Digital twin"

City model

Image source: https://cdn.austria.info/media/17083/thumbnails/stadtansicht-wien--oesterreich-werbung-julius-silver--d.jpg.3146497.jpg
Simulation tool A

Physical process A

simulated by

Simulation tool B

Physical process B

simulated by

Results set A

Conditions set A (assumptions, constraints, etc.)

City model A

Results set B

Conditions set B (assumptions, constraints, etc.)

City model B

Extraction of city model entities (and their characteristics)
Simulation tool A	Physical process A	Results set A	Conditions set A (assumptions, constraints, etc.)	City model A
Simulation tool B | Physical process B | Results set B | Conditions set B (assumptions, constraints, etc.) | City model B
Simulation tool C1 | Physical process C | Results set C1 | Conditions set C1 (assumptions, constraints, etc.) | City model C
Simulation tool C2 | City model C

Extraction of city model entities (and their characteristics)
Simulation tool A

Physical process A

Results set A

Conditions set A (assumptions, constraints, etc.)

City model A

Simulation tool B

Physical process B

Results set B

Conditions set B (assumptions, constraints, etc.)

City model B

Simulation tool C1

Physical process C

Results set C1

Conditions set C1 (assumptions, constraints, etc.)

City model C

Simulation tool C2

Physical process C

Results set C2

Conditions set C2 (assumptions, constraints, etc.)

City model C

Extraction of city model entities (and their characteristics)

Import of simulation results
PROBLEM:

Which set of results is "better"?

Storing "just" the results may not be enough!
Deriving new city models

- A city is a "living" system which continuously changes over time
- A virtual city model is a snapshot at a certain moment

These progressive time-dependent changes can be taken care of by means of versioning
Deriving new city models

- A city is a "living" system which continuously changes over time.
- A virtual city model is a snapshot at a certain moment.
- But, as a digital twin, it can be also manipulated at will! 😊
Scenario ADE: Rationale

- A city is a "living" system which continuously changes over time.
- A city model is a snapshot at a certain instant.
- But, as "digital twin", it can be also changed at will!

These progressive time-dependent changes can be taken care of by means of versioning.
Deriving "new" city models: basic operations

- Source city model
- City model A

Changes: Add Feature
Deriving "new" city models: basic operations

Source city model

City model B

Changes

Remove Feature
Deriving "new" city models: basic operations
Scenario ADE: Rationale

- A city is a "living" system which continuously changes over time.
- A city model is a snapshot at a certain instant.
- But, as "digital twin", it can be also changed at will! 😊
PROBLEM:

Storing "just" the results is definitely not enough!
(Some) related work

- Chaturvedi K. et al. (2015), “Managing versions and history within semantic 3D city mode for the next generation of CityGML”
 - Oriented at CityGML 3.0
 - A rather profound change/addition to the current CityGML model

- Sindram M. (PhD in preparation) "Modeling of Urban Planning Actions by Complex Transactions on Semantic 3D City Models"
 - Work in progress paper (2014):

- Several bilateral discussions with colleagues
 - IF any, then home-made, specific solutions
 - No detailed information, documentation, code, etc.
Scenario ADE: Rationale

- In the Scenario ADE, a **scenario** is defined as a **unique** combination of:

 - A **city model** (a building, a district, …, the whole city)
 - Information about how the city model (virtual or real) was obtained
 - Description of changes from city model A to city model B

 - A **simulation tool/model** characterised by a set of conditions:
 - Specific assumptions
 - Specific constraints

 - The set of **results**, (KPIs, time series, …)
 - possibly having different spatial and temporal resolutions
 - possibly linked to specific entities (CityObjects)

 - A scenario is the **connection** point between the Simulation Package and the/a city model.
Scenario ADE: UML Diagram
Scenario ADE: UML Diagram

Image source: http://www.lego.com
Scenario ADE & 3DCityDB

- Already implemented as database schema and included in the extended 3DCityDB "plus"

- Implementation rules are exactly the same as for Energy ADE and Utility Network ADE

→ See next presentation
Scenario ADE & 3DCityDB

- Basic idea: **avoid "cloning"** objects used in multiple city models
 - Store (City)Objects only once, and use different grouping rules
Scenario ADE & 3DCityDB

- Basic idea: **avoid "cloning"** objects used in multiple city models
 - Store (City)Objects only once, and use different grouping rules

- The **GOOD NEWS:**
 - The 3DCityDB **already** has tables allowing it
 - CITYMODEL table
 - CITYOBJECT_MEMBER table
 - Currently unused (for a number of reasons) by the Importer/Exporter, but they can be used by interacting directly with the 3DCityDB

- **BUT:**
 - The Importer/Exporter tools does not support handling of multiple city models in the same database instance
 - Some workarounds are necessary to import and export (e.g. "ab"using a bit the concept of CityObjectGroup)
Conclusions

- The current Scenario ADE (v. 0.2!!)
 - gives a (relatively simple and lightweight) answer to the general need of scenario management within virtual city models
 - Contributes to bridging the "city modelling" and "simulation" worlds
 - The link is the Scenario, not the CityModel itself
 - It allows for documentation of "how a city model was obtained"
 - It is compatible with the current CityGML 2.0
 - It exploits already existing objects of the 3DCityDB
 - Already implemented for the 3DCityDB
 - BUT some limitations in terms of Importer/Exporter
 - Already being used and tested within project IntegrCiTy
 - Is still work in progress: Nothing is set in stone!
 - Are you interested at deeper look?
 - Willing to use it? Willing to contribute?
 - Interested in finding resources to "push" the changes also to the Importer/Exporter?

CONTACT US!!
Dr. Giorgio Agugiaro
Energy Department
Smart and Resilient Cities Unit
AIT - Austrian Institute of Technology GmbH
giorgio.agugiaro@ait.ac.at

ACKNOWLEDGEMENTS

Maximilian Sindram, Thomas Kolbe (TU München)
Claus Nagel (virtualcitySYSTEMS), Joachim Benner (KIT)
Pablo Puerto (CREM), Edmund Widl (AIT)