
Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Nanaimo Water Pipes

Utility Network ADE Sample

BSc. Isaac Boates (EIFER)

MSc. Ing. Alexandru Nichersu (EIFER)

Dr. rer. nat. Tatjana Kutzner (TUM)

Supplementary Information

2017-12-08

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Introduction

2

This PDF details the specific steps that were used to improve the Nanaimo

sample dataset (originally presented 2017-06-30 in Vienna), for a

presentation in Karlsruhe on 2018-12-08 by Isaac Boates.

The steps included are carried out in FME Workbench. It is assumed that

the reader is already familiar with FME, the UtilityNetwork ADE, and the

steps involved in creating the original Nanaimo data sample. If they are not,

tutorials on FME can be found at https://knowledge.safe.com/page/tutorials

and information about the UtilityNetwork ADE and the Nanaimo sample can

be found at https://github.com/TatjanaKutzner/CityGML-UtilityNetwork-ADE

The processes described are as follows:

• Preprocessing Service Lines

• Preprocessing Buildings (& Parcels)

• Adding Buildings & TerminalElements

• Adding InterFeatureLinks from TerminalElements to Service Lines.

https://knowledge.safe.com/page/tutorials
https://github.com/TatjanaKutzner/CityGML-UtilityNetwork-ADE

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Service Lines

3

The „SERVICES“ shapefile contains the

service line features, which are the pipes

that lead from the main water lines

towards the buildings themselves (but not

necessarily alway directly to the buildings.

Unfortunately there are some missing

water pipe features in the „PIPES“

shapefile, which leave some service lines

orphaned.

It would be nice to find a way to rebuild the

water pipe features, but due to lack of

information, the current strategy is the

simply remove all orphaned service lines.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Service Lines

4

The methodology used to achieve this goal is found in the „Remove orphan

service lines“ bookmark in the sample data workbench.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Service Lines

5

First, both the service lines and the pipes passed (optionally through the

SpatialFilter to transform only a subset of features) to a pair of

SpatialRelators. The service lines are the requestors in both. The upper one

uses service lines again as supplier and the bottom one uses pipes as

suppliers, with „Requestor Touches Supplier“ as the condition in both.

A subsequent AttributeRangeFilter is able to count the number of spatial

connections and can filter out those with none as „orphans“.

1

2

1

2

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Service Lines

6

The features are then passed to a DuplicateFilter, which filter out all the

duplicates from the pair of SpatialRelators (those which touch another service

line and a pipe feature).

The features are then finally passed to a UUIDGenerator and

StringConcatenator transformer, which gives each a unique ServiceLine_ID

attribute value. The ServiceLines are also passed towards the RoundPipe

production chain, since they are also physical pipes.

3

4

3

4

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

7

On the left we see the

„BUILDINGS“ (brown),

„PARCELS“ (teal), „PIPES“ (blue)

& „SERVICES“ shapefiles.

As we can see, in most cases, the

service lines do not actually reach

the building footprint, so we will

use the spatial relationship

between the service line and the

building footprint to get the

necessary information.

To make the buildings seen in the Nanaimo Water Network data sample, as

well as their connection to the RoundPipe‘s FeatureGraphs via

InterFeatureLink, the building footprints must first receive some information

from their respective parcels.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

8

The parcels, however, need some processing. The „TYPE“ attribute gives

information as to the type of parcel. Some parcel types seem to have special

relationships.

For instance, in many cases, „Strata Lot“ parcels often appear fully enclosed

& overlapped by „Strata“ parcels.

Furthermore, there are some parcels that account for a duplex building on

them, despite the feature from the „BUILDINGS“ shapefile being one

contiguous feature, and sharing a service line.

Left: Strata Lot features totally covered by

single Strata feature.

Right: Duplex building

(BARE_LAND_STRATA) totally covered by

single Strata Feature, but sharing a single

service line.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

9

It would be much more helpful to use if we removed all these overlaps, so that

we were left only with individual parcels. A parcel can have 1..n buildings, but

wherever possible, a building should only have 1 parcel.

The methodology used to achieve this goal is found in the „Clean up parcels“

bookmark in the sample data workbench.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

10

The parcels are passed (optionally through the SpatialFilter to transform only

a subset of features) to the AttributeFilter.

The Attribute Filters on the „TYPE“ attribute, letting all features pass except

for those with TYPE IN (‚Strata‘, ‚BARE LAND STRATA‘, ‚Building‘, ‚Air

Space‘)

‚Air Space‘ is simply discarded because it is not interesting to us.

1

1

2

2

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

11

The ‚Strata‘, ‚BARE LAND STRATA‘, & ‚Building‘ parcels are passed to the

Dissolver, which dissolved based on the „PLAN“ attribute. This attribute

appears to be unique for the features around each individual building or

building agglomeration.

Now, the unfiltered features from earlier and the newly-dissolved features are

passed to the next AttributeFilter transformer, which sorts them into ‚Strata

Lot‘ and Others.

3

4

3

4

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Preprocessing – Buildings & Parcels

12

The ‚Strata Lot‘ features are then used to clip chunks out of the rest of the

features. The „inside“ features are therefore the individual building parcels,

while the „outside“ features are the areas around them. We might as well

keep both, even though we are mostly interested in the „inside“ areas.

All the resulting features are then passed to a UUIDGenerator, which

generates a „Parcel_ID“ attribute. This attribute is never actually written to

the final CityGML file, but it is necessary to make the link between service line

and building later.

5

5 6

6

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings & Associated TerminalElements

13

The „BUILDINGS“ shapefile has building footprint information. In some

cases, it also has building height information, however this is quite rare. The

end goal is to have LoD1 extrusions for buildings.

But before detailing the process of creating buildings, let us first consider the

necessary components and properties that will need to be created and

interrelated.

A Building element will need the following information:

• Height

• Elevation (since the data sample uses a local DEM for height)

• An associated TerminalElement

• This TerminalElement must also have an associated Featuregraph (a

single Node), which itself must be connected to the pipe network.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings & Associated TerminalElements

14

We can therefore envision the entire Building Feature Assemblage in two

ways:

Geometrically:

An LoD1 exstrusion, risen to the

elevation of the DEM with a

TerminalElement point geometry

at the center of its base.

Topologically:

A FeatureGraph consisting of a

single Node. It is connected via

an InterFeatureLink to the

FeatureGraph of the service line

RoundPipe terminates on the

Building‘s parcel.

(This image is looking up at the buildings from underneath, simply

for the sake of showing the position of the TerminalElements)

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

15

The methodology used to create the buildings can be found in the „Buildings“

bookmark in the workbench. It will be presented in several parts since it is

very large.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

16

The buildings are passed (optionally through the SpatialFilter to transform

only a subset of features) to a FeatureMerger, which merges them 1:1 with

the NetworkID and NetworkGraphID (we will need these for determining

ownership of TerminalElements, FeatureGraphs, etc.

The buildings are then passed to a SpatialRelator, which relates them to the

output of the Parcels bookmark using the "Requestor Intersects Supplier„

spatial predicate.

1

2

1
Network & NetworkGraph

2

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

17

The buildings are then passed to a series of UUIDGenerator +

StringConcatenator combos to generate all the IDs we will need for the

remainer of their transformation (Building, TerminalElement, FeatureGraph &

Node)

These building footprints are then passed to a SurfaceDraper which drapes

them onto the DEM, giving them their elevation.

3

4

3
4

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

18

The draped buildings are then passed to a CenterPointReplacer, which

creates a point at the 3D centre of the draped footprint.

These points are then passed to a CoordinateExtractor, which stores each

point‘s XYZ coordinates as attributes.

They are then passed to a FeatureMerger (BuildingID = BuildingID), which

gives the point‘s XYZ coordinates to each original Building footprint.

5

6

7

5

6

7

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

19

The footprints (now with XYZ point coordinates) are then passed to an

Offsetter, which raises the buildings to the Z-coordinate of the point. The

reason this is done is because if we had just raised the draped footprints

directly, it would have warped the polygons to fit the terrain exactly, resulting

in rounded, unnatural shapes for the buildings.

The raised footprints are then passed to an Extruder, which extrudes the them

to the number of floors * 3m. Footprints without floor information are

assumed to be 2 floors tall.

8

9

8

9

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

Buildings

20

The extruded footprints are then passed to an AttributeRenamer &

StringConcatenator, which set the Building ID to be the gml_id, and create a

name for the Building that is a concatenation of its street address & postal

code, respectively.

The CityGML geometry is then set by creating an attribute called

citygml_lod_name and setting it to lod1Solid, then setting this attribute using

the GeometryPropertySetter. The buldings are then written to the Building

Writer.

10 11

10

11

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

TerminalElements

21

To show how the TerminalElements are made, we need to travel back along

the transformer chain. We go back to the CenterPointReplacer where we

made the 3D points out of the draped building footprints. Since these points

were derived from the building footprints, we have already assigned them all

necessary Ids, including the TerminalElement ID (see Buildings step 3).

The points are then passed to an AttributeRenamer, which renamed all the

Ids to what they need to be from the TerminalElement‘s perspective

(TerminalElement_ID = gml_id, Network_ID = gml_parent_id, Building_ID =

utility_connected_city_object, FeatureGraph_ID = utility_topo_graph_xlink).

The StringConcatenor right afterwards appends a # symbol to the

utility_topo_graph_xlink attribute.

1

1

2

2

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

TerminalElements

22

An AttributeCreator is used to set the points‘ „citygml_feature_role“ attribute to

„component.“

The points then have their CityGML geometry set by creating an attribute

called „citygml_lod_name“ and setting it to „lod1Geometry“. This attribute is

then set as the CityGML geometry attribute.

The points then have various semantic attributes set, according to attributes

from the source data, and are written to the TerminalElement Writer.

3

4

4

3

5

5

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

TerminalElement FeatureGraphs & Nodes

23

To show the process of creating the TerminalElements‘ Featuregraphs, we

must once again return to the CenterPointReplacer (see Buildings step 3).

Since the TerminalElement‘s FeatureGraph will consist only of a single Node,

that Node must be of “exterior“ type. We set this with an AttributeCreator.

The points then have their CityGML geometry set by creating an attribute

called „citygml_lod_name“ and setting it to „realization“. This attribute is then

set as the CityGML geometry attribute. A 3DForcer is used to force the point

back to 2D (z=0), since FeatureGraphs are always 2D.

1

2

1

3

2
3

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

TerminalElement FeatureGraphs & Nodes

24

The points are then passed to an AttributeCreator which creates a

„citygml_feature_role“ attribute to „nodeMember“, indicating that it is a Node

that belongs to a FeatureGraph.

The points are then passed to an AttributeRenamer which sets the Node ID

as the „gml_id“ attribute and the FeatureGraph ID to the „gml_parent_id“

attribute. Thez are then written to the Node Writer..

4

5

4

5

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

TerminalElement FeatureGraphs & Nodes

25

Going back to when the CityGML geometry was set, the points take a

different branch to a GeometryRemover, because they are goin to the

FeatureGraph transformer and FeatureGraphs have no inherent Geometry.

They also have a „featureGraphMember“ relationship set with the

NetworkGraph ID.

The „FeatureGraph_ID“ atribute is then renamed to „gml_id“ and

„NetworkGraph_ID“ is renamed to „gml_parent_id“. The features are then

sent to the FeatureGraph Writer.

6

7

6
7

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

26

Now that we have created the Buildings, along with their TerminalElements

and the FeatureGraphs thereof, it is time to make the topological connection

between the service line pipes and the TerminalElement‘s FeatureGraph‘s

Nodes.

As a reminder, the only way we know how to make this relationship is by

bridging the gap from the service line pipe to the building via the parcel:

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

27

Going back to where we left off with the Service LinePreprocessing, we had

just assigned each (non-orphaned) Service Line a Service Line ID. The

ServiceLines were also passed to the RoundPipe production chain. (See

Service Line Preprocessing Step 3)

The Service Lines are then passed to a TopologyBuilder, which breaks them

into their node points.

The node points are then passed to a PointOnAreaOverlayer transformer,

which overlays them with the RoundPipe Features, which have had their

„RoundPipe_ID“ attribute renamed to „Parent_RoundPipe“.

1

2

3

1
2

3

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

28

The Service Lines are then passed to an AttributeRangeFilter. By counting

the number of connections determined by the PointOnAreaOverLayer

attribute, we can separate the nodes that are leading towards the building and

those that are touching the main pipes.

Meanwhile, the previously Parcels are passed to an AttributeRenamer that

changes the „Parcel_ID“ attribute to „Parent_Parcel_ID“.

4

5

4

5

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

29

The points are then passed to a PointOnAreaOverlayer, which gives this

„terminal service line node“ the „Parent_Parcel_ID“ attribute.

The coordinates of this point are extracted and stored in an attribute called

„pipe_x“ and „pipe_y“.

6

7

6
7

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

30

The part of the transformer chain displayed above is a continuation from the

last image, it is just found in a different location in the workbench, on the

center-right edge.

The points are passed to a SpatialRelator, white checks for an intersection

between the point and the nodes coming from the RoundPipe production

chain. This is how we know which Node from the RoundPipes‘

Featuregraphs we have to connect to.

8

8

From RoundPipes

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |
31

When we pre-processed the Service Lines,

we forwarded them to the main pipe

RoundPipe production chain, so that they

would be included in the network as physical

pipes.

In this chain, they had FeatureGraphs

created, with associated Nodes. These

nodes also represent the point at which our

InterFeatureLinks to the TerminalElements

originate from the main pipe Network.

They are shown here, circled in red.

We need the NodeID of these nodes, so that

our InterFeatureLinks can reference them as

their Start Node ID.

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

32

The points are then passed to a FeatureMerger, whichgives their attributes to

the TerminalElements of the Buildings, using their „Parent_ParcelID“ attribute

and the „Parcel_ID“ attribute of the TerminalElement Nodes. This allows for

every TerminalElement on a given Parcel to be connected to the appropriate

service line, so that parcels with multiple buildings are all connected to the

same service line.

Note that the TerminalElement Node points are actually the requestor in this

case, the attributes of the service line endpoint are being added to them.

9

9

From RoundPipes

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

33

The points are then passed to a VertexCreator, which draws lines starting at

each TerminalElement node point to its respectve service line node point.

The newly-created lines are then assigned a UUID and prefixed with

„TerminalElementID_“.

From RoundPipes

10

10

11

11

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

34

The lines then have two new attributes created, „citygml_fetaure_role“, which

is set to „linkMember“. This defines the feature as being a member of the

NetworkGraph. „utility_type“, is set to „connects“, which indicates that it is a

connection between two nodes of different FeatureGraphs.

Attributes are then renamed to establish the correct final attribution for the

features. „Service_Node_ID“ becomes „utility_start_xlink_href“,

„Terminal_Node_ID“ becomes „utility_end_xlink_href“, „InterFeatureLink_ID“

bcomes „gml_id“ and „NetworkGraph_ID“ becomes „gml_parent_id“

From RoundPipes

12

12

13

13

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |
35

To describe visually where we are:

Red circled points = utility_start_xlink_href

(formerly Service_Node_ID)

Blue circled points = utility_end_xlink_href

(formerly Terminal_Node_ID)

Green arrows = InterFeatureLink, created

from VertexCreator transformer

Nanaimo Water Pipes – Utility Network ADE Sample08.12.2017 |

InterFeatureLinks

36

Two StringConcatenators are used to append a „#“ symbol to the

„utility_start_xlink_href“ and „utility_end_xlink_href“ attributes, as it is a

CityGML convention to refer to xlinked IDs in the same document in this way.

The geometry is then specified by creating an attributed called

„citygml_lod_name“ and setting it to „realization“, then setting the Geometry

with a GeometrySetter on the same attribute.

From RoundPipes

14

14 15

15

